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PARAXIAL COUPLING OF ELECTROMAGNETIC WAVES IN
RANDOM MEDIA*

JOSSELIN GARNIER!' AND KNUT SOLNA?

Abstract. We consider the propagation of temporally pulsed electromagnetic waves in a three-
dimensional random medium. The main objective is to derive effective white-noise paraxial equations
from Maxwell’s equations. We address the scaling regime in which (1) the carrier wavelength is small
compared to the incident beam radius, which itself is small compared to the propagation distance;
(2) the correlation length of the fluctuations of the random medium is of the same order as the beam
radius, and the typical amplitude of the fluctuations is small. In this regime we prove that the wave
field is characterized by a white-noise paraxial wave equation that has the form of a Schrodinger-type
equation driven by a Brownian field. We identify the covariance function of the Brownian field in
terms of the two-point statistics of the fluctuations of the dielectric permittivity and the magnetic
permeability of the medium. We also study the case in which a strong interface is embedded in the
random medium and study the reflected wave, which again is characterized by a Schrodinger-type
equation. We discuss applications to enhanced backscattering, time reversal, and imaging.
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1. Introduction. In the last few decades the parabolic or paraxial wave equa-
tion has emerged as the primary tool for describing small scale scattering situations as
they appear in radiowave propagation, radar, remote sensing, seismic imaging, wire-
less communication, propagation in urban environments, and underwater acoustics
[7, 27, 33], as well as in elastic propagation problems in the earth’s crust [9]. The
paraxial equation models wave propagation in the situation with a privileged prop-
agation axis. It was first introduced by Leontovitch and Fock in [19], and it is now
used for many applications. In the case of scalar waves in heterogeneous media, the
time-harmonic field is the solution of a Schrédinger equation in which the evolution
variable is the spatial variable along the privileged propagation axis, and the heteroge-
neous medium plays the role of a random potential. This Schrédinger or paraxial wave
equation is obtained by neglecting backscattering. It is simple compared to the full
three-dimensional wave equation (or the Helmholtz equation for the time-harmonic
field) since it is a one-way equation, and it enables analysis of many wave phenomena,
such as laser beam propagation [32].

However, it is not possible to obtain closed-form equations for the moments of the
wave field when the random fluctuations of the medium are arbitrary. The latter can
be achieved by using the white-noise approximation. The white-noise paraxial wave
equation is of interest for at least two reasons [22, 34]. First, it appears as a natural
model when the correlation length of the fluctuations of the medium is smaller than
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the propagation distance. Second, it allows for the use of It6’s stochastic calculus,
which in turn enables the closure of the hierarchy of moment equations and the sta-
tistical analysis of important wave propagation problems, such as scintillation [21].
When the paraxial approximation and the white-noise approximation can be justi-
fied simultaneously for scalar waves, the limit equation takes the form of the random
Schrédinger equation driven by a Brownian field studied in particular in [10]. The
proof of the convergence of the solution of the wave equation in random media to the
solution of the white-noise paraxial equation was obtained for stratified weakly fluc-
tuating media in [4] and recently for three-dimensional random media in the context
of acoustic waves in [25]. Despite its importance and many applications a rigorous
derivation of the paraxial approximation for electromagnetic waves in heterogeneous
media in the scaling limit where the potential takes the form of a Brownian flow
has thus far not been presented. In [14] a hierarchical system for electromagnetic
waves is constructed in a coupled paraxial formulation, while our focus here is on the
white-noise limit. Our paper extends the scalar, acoustic theory that we developed
in [25] to the vector, electromagnetic case. We will show that electromagnetic wave
propagation in a certain regime can be described by a system of Schrédinger equa-
tions driven by a single Brownian field. The proof involves invariant imbedding and
diffusion approximation theorems, which were used, for instance, in [26] to analyze
the reflection of electromagnetic waves from a randomly stratified half-space in a dif-
ferent scaling regime. We will identify the covariance function of the Brownian field in
terms of the two-point statistics of the fluctuations of the dielectric permittivity and
the magnetic permeability. Moreover, our results show how the electromagnetic wave
modes decouple, dynamically justifying the scalar wave approximation often used in
applications. However, our analysis shows for the first time how the modes couple
statistically. This statistical coupling is very important in certain applications such
as time reversal of electromagnetic waves that we address in our paper. We will also
consider the case in which a strong interface is present in the random medium, which
is a configuration of interest for optical tomography [35]. We will show that the re-
flected field can be described by a Schrédinger-type equation which accounts for all
incoherent and coherent effects, such as enhanced backscattering.

The paper is organized as follows. In section 2 we describe Maxwell’s equations
in a random medium. We introduce the decomposition into “right” and “left” propa-
gating modes in section 3. In section 4 we present the main results regarding random
paraxial wave equations. The proofs of the results are given in section 5. A conve-
nient tool for analysis of wave field moments is the Wigner transform of the fields,
and we introduce this in section 6. We use this tool for the analysis of enhanced
backscattering and time reversal in section 7.

2. Maxwell’s equations for electromagnetic waves in a random medium.
We consider electromagnetic waves propagating in a three-dimensional medium with
heterogeneous random fluctuations and without dispersion. Maxwell’s equations for
the electric field E(t,x, z) and the magnetic field strength H (¢, x, z) are

(2.1) VX E=—u(xz,z)0:H,

(2.2) V- (e(x,2)E) = p(t, z, z),

(2.3) Vx H=J9tx,z) +e(x, 2)0,E,
(2.4) V- (u(x,2)H) = 0.
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Here we denote the spatial variable by (x, z), with = (z,y) € R?. The term J)
is a current source term, € is the dielectric permittivity of the medium, and p is the
magnetic permeability of the medium. Note that the equation of continuity of charge
op+ V- JB) =0 is automatically satisfied.

We consider in this paper the situation in which a random section occupying the
region z € (0, L) is sandwiched in between two homogeneous half-spaces; see Figure
2.1. We denote the medium parameters in the half-space z < 0 by €1 and p; and in
the half-space z > L by 9 and pg. The medium is assumed to be matched at the
right boundary z = L, while we consider a possible mismatch at the left boundary
z =0 (in the sense that (e1, 1) # (€0, pto)). The medium parameters are

€1 if 2 <0,
(2.5) e(x,z) = eo[l+me(x,2)] if z € (0,L),

€0 if z> L,

1 if z <0,
(2.6) (@, z) =< pol[l+myu(m,2)] if z € (0,L),

Ho if z > L.

The random processes m.(x, z) and m,(x, z) model the medium fluctuations. We
assume that they are bounded, stationary, and zero-mean and that they satisfy strong
mixing conditions in z.

We now put the problem in dimensionless form. Let L denote a typical propaga-
tion distance, &€ and i denote typical dielectric permittivity and magnetic permeabil-
ity, and E represent a reference electric field strength. This corresponds to a typical
propagation speed ¢ = i~ '/2671/2 and a typical impedance ¢ = '/2271/2. We define
the dimensionless independent variables

=L 'e, 2Z=L"'2 t=cL 't
and the following dimensionless dependent variables:

E =E7'E, ="', JO =(LCEHTW,
H' = ((EYH, p=p"'p, p=(Le'E)p,

After dropping the primes, Maxwell’s equations in dimensionless form have the form
(2.1)—(2.4) with

€1 if z <0,
(2.7) e(x,z) =14 eo[l+n.(%, %) if2€(0,L),

€0 if z> L,

1 if z <0,
(2.8) wx,z) =< poll+aPnu (%, %) ifz€(0,L),

Ho if z > L.

The parameter o is the ratio of the correlation length of the random medium fluc-
tuations over the typical propagation distance. We will assume that it is small. Here
we have also assumed that the amplitude of the random fluctuations is small, of order
a3, because this is the interesting regime in which the effective terms due to the ran-
dom medium fluctuations are of order one when « goes to zero. The dimensionless
random processes n.(x, z) and n,(x, z) have standard deviation and (dimensionless)
correlation length of order one.
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F1c. 2.1. Schematic of the reflection-transmission problem: a source at z = L emits a wave in
the random section z € (0, L), in the presence of a strong interface at z = 0.

We assume that the current source J) is located at the surface in the plane
z = L. We counsider a scaling regime in which the spatial support of the source (in the
transverse direction), which will determine the initial beam width, is of order a?. This
means that the transverse scale of the source and the one of the spatial fluctuations
of the medium are of the same order. Remember that the Rayleigh length for a beam
with initial beam width r¢ and carrier wavenumber kg is of the order of korg in the
absence of random fluctuations (the Rayleigh length is the distance from the beam
waist where the beam area is doubled by diffraction). Therefore, if we assume that
the carrier wavelength of the source is of order o, then the Rayleigh length is of order
one. In this regime the source has the form

t x

—) 5(z — L),

(2.9) JO(t @, 2)=J (g’ —
and it generates waves that propagate mainly along the z-axis, as we will see below.
We shall refer to waves propagating in a direction with a negative (resp., positive)
z-component as left-going (resp., right-going) waves.

Before starting the analysis of the problem, we discuss the relevance of the scal-
ing hypotheses for a particular case. In an optical context (light beam propagation
through the turbulent atmosphere), we may consider the situation in which the carrier
wavelength is of the order of 1 ym and the typical propagation distance is of the order
of 100 m. The correlation radius of the fluctuations of the medium and the typical
beam radius are of the order of 1 cm. Here o® = 10~%. In order to be in the suitable
regime, the amplitude of the fluctuations of the medium should be small, of the order
of 107, which is indeed the case in the turbulent atmosphere [32].

3. The boundary value problem for the wave modes. We rescale the trans-
verse spatial variables and the time variable so as to observe the wave at the scale of
the source, and we take a Fourier transform in time:

Eo‘(w,sc,z) = /E(a‘lt,ozzsc,z)ei“’tdt, ﬁa(w,w,z) = /H(oz4t,o<2w,z)ei“’tdt.

We denote E = (Ej)j=123 and H = (H;)j=123. The four-dimensional vector
(ES, HS, ES', HY) satisfies

v WU e T 1 oo . ia? 1.

9 WE v 1 9 v Y
2 LHY = — BV — —0y | —(0.E5 — 0y,ET)| — - L),
32 0y = TEr - 20, | L0uE5 ~0,E0)| - o~ 1)
“a W = 1 1 o o ia? 1.
(33) (’LEZ = —¥H1 + ;ay [g(awHQ - 8UH1 ):| - 781/ |:EJ3:| (5(2 - L),
WE » {

wgel o 1 [ o 7
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where € and pu are taken at (o, z) and
J(w,z) = / J(t, ) dr.
The two other dependent variables (Eg, H') are given by
o ia? . . iat o
(3.6) fo = 19 o, B — o, B
: 3T T\t y L)

When the medium is homogeneous (¢ = ¢p and pu = ), there exist plane wave
solutions that depend only on z and that satisfy

Eu? Ev? 0 Ho 0 0
d |HS iw_ | HS g 0 0 0
— |5 =_—M |2 M =
dz | ES at Eg |’ 0 0 0 —puo
He He 0 0 — O

The diagonalization of the 4 x 4 matrix M gives the general form of the plane wave
solution:

9 1 wz
ES(w,z) = ¢ (&z(w)e coo® 4 hy(w)e  coe )
o _1 | _w
H(w,2) = ¢ 2 (—aa(w)e 0™ + by(w)e oot
Here co = pg 1/ 280_ 172 and o = u(l)/ €0 /2 are the homogeneous propagation speed

and impedance. The modes d;, j = 1,2, are right-going waves and the modes Iv)j,
j =1,2, are left-going waves.

When the medium is heterogeneous and described by the model (2.7)-(2.8), we
introduce the generalized right-going modes af (w, z, 2), j = 1,2, and left-going modes
l;?(w,:c,z), 7 =1,2, defined in the space z > 0 by

at(w,x, z) = %(C()’%Evf‘(w, x,2) + Co% 79 (w, Z)>e’lc:§4 :
5?("‘%%2) = %(C(;%Evf‘(w,w,z) — CO% vg‘(w,m,z)>eicx4
a3 (w, @, 2) = %(Co_% 5 (w0, ®, 2) — céﬁf(w,m,z))e*icﬁia
b (w, @, 2) = %(Co_% U9 (w, @, 2) + Céﬁf(w,m,z))eic:;“,

which gives the decomposition

B (w,,2) = G5 (i (w, 2, 2)e 7 4 B (w, 2, 2)e " 0oT),
15 (w,,2) = ﬁ(fzm,m,z)e%o@ b (w,, 2)e i),
B8 02,2) = G (8 (0,20 T 4 0,207 ),
HE (0, @,2) = G F (~ (w0, @, 2)e o + Bg(w, @, 2)e " woaT).
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xTr
a5(07) =0 a5(0%) as(L) b as(Lt)
b507) § (0) b5 bs(LT) =0
D D D K
J0 L g

Fic. 3.1. Boundary conditions for the modes in the presence of an interface at z = 0, a random
section (0, L), and a source at z = L.

In the space z < 0 the modes are defined in terms of the propagation speed ¢; and
impedance (; by

1/ 1. 1,
af(w,x, z) = §(§1 2EY (w,x, 2) + (P HS (w, @, 2 )e ,
v 1/ 1., 1 a
bl(wawaz)_§(<1 PET(w,m,2) — (f Hj WCUZ) e

1 1 1
ag(w,x, z) = 5 ¢ 2ES(w,m, 2) — CEH (w, , 2 )e ,
v 1/ 1o 1. i
bS(w,x,z) = §(C1 2R (w,x, 2) + (P HY (w, @ z))e et

The radiation conditions at +o0o and —oo imply that there is no left-going wave in
the region z > L and no right-going wave in the region z < 0 (see Figure 3.1):

(3.7) aj(w,®,z=0")=0, j=1,2,
ja Y o S L
(3.8) bj(w,z,2=L") =0, j=1,2.

The jump conditions at the source plane z = L are obtained by integrating (3.1)—(3.4)
across z = L:

. 2

© oLt —ia? © oLt —lx v

(3-9) [El]ﬁ— = e ('9 J3, [Ez]ﬁ— = weo 8yJ3a
(3.10) Lth—L, [HS1E" = — .

From the jump conditions (3.9)—(3.10) and the radiation conditions (3.8) we obtain

jwl

(3.11) b (w, @, 2 = L) = by j(w, @)e 0o, j=1,2,
3 C9.—3
(3.12) (@) = ~ LSy 0,2) + 900, Jy(w, ),
’ 2 we ()
. @ ia2;
(3.13) bmcg(w,m) = —7J2(w,m) 41 Seg 0y J3(w, ).

From the jump conditions (3.9)—(3.10) we obtain

: wl
pqed _ + v _ — v —r =
(3.14) aj(w,z,z2=L") =aj(w,z,2 = L") + ap. ;(w, x)e coo*
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for 7 = 1,2, where

1 1
} 3 i,
(3.15) Aipeq (W, T) = —%Jl(w,m) - 2520 0z J3(w, ),
1 1
. 2 ia2 —2 .
(3.16) Aine 2 (W, @) = —%Jg(w, x) — 2520 Oy Js(w, x).

Note that the terms Ginc,; are the wave fields generated by the source and that prop-
agate to the right from the source. These fields propagate in the homogeneous right
half-space z > L, and they never penetrate the random section. As we will see, they
are concentrated in time around time 0.

By the continuity of the fields (E;)j—12 and (H;)j=12 across z = 0 and the
radiation condition (3.7) at —oo we get

(3.17) % (w,x, 2 = 0") = Rob%(w, @,z = 0T)

for 7 = 1,2, and the transmitted left-going modes l;? (w,z,z=07) are

v

(3.18) b (w,x, 2 = 07) = Tob$ (w,x, 2 = 07),

where Ry and Ty are the reflection and transmission coefficients of the interface at
z=0:

G —Co _ 2y/GiGo

(3.19) Ry

= 5 O —_— .
G+ G ¢+ ¢
Let us introduce the four-dimensional vector
ag
. o _jwL
(3.20) X¥w,x,2) = 5}1 (w,x,z)e coo*.
2
by

By (3.1)-(3.4), the vector X satisfies in the region z € (0, L) the linear system

9

dX«

dz

X o X0 , 2igr— X2 —2igi % o 1 Z 0

A%w,z,2) = A"+ e 0 A*fe Tt A +_(na+nu)(wa_2)B
a a

(3.21) = A%w,z,2) X,

1 i wz _9j wz
(3.22) + —(ne —ny) (m, %) {62 cteg B2 4+ ¢ 2tateg B*2}7
« «

and (3.11) and (3.17) give the two-point boundary conditions

(3.23) K'X(w,,0) + KEXY(w, 2, L) = V(w, ).
The matrices A7 and B? are given in Appendix A, and
(3.24)
0 1 —Ry 0 0 000 0
. e (w, @) o 0 0o o o L o100
Viw,z) = 0 K =10 0 1 “r BT lo 00 0
Eﬁcg(w,m) 0 0 0 0 00 0 1
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In the expression (3.22) for A® we have neglected terms of orders v and smaller and
kept only the terms of orders a~! and one. The mode decomposition has canceled
the terms of order a~* that are present in the original equations (3.1)—(3.4).

If the source is x-independent and if the medium is homogeneous (n. = n, = 0),
then the solution of (3.21)—(3.23) is a constant vector which corresponds to a collection
of left-going modes that propagate with the velocity cg.

If the source is &-dependent and /or the medium is heterogeneous, then transverse
spatial effects and random effects have to be taken into account.

The matrices A7 in (3.22) correspond to deterministic transverse spatial effects.
They will give the diffraction term in the limit a — 0.

The random factors in (3.22) correspond to forward and backward scattering and
coupling between modes due to the random heterogeneities of the medium. They are
large, of order a~!, but they vary rapidly at the scale o, and the driving processes
have zero means and mixing properties. They will also give rise to effective terms of
order one in the limit & — 0 through the application of a diffusion approximation
theorem. The limit of X will be characterized by a stochastic partial differential
equation driven by a Brownian field.

4. The random paraxial wave equations for the transmitted and re-
flected waves. In this section we state the main result of this paper, which we prove
in the next two sections. Proposition 4.1 describes the transmitted wave in terms of
a transmission operator solution of an It6—Schrédinger equation.

PROPOSITION 4.1. In the asymptotic regime o — 0, the transmitted wave is of
the form

E L, \ a0 [EW
(4.1) {H] <t= . +a’s,a*x,z2=0 ) - [H(t) (s, ),
with
(t) _ CO Cl / ! —iws s
E; (s,x) = ’Tw xz,x',L)J (w,sc)dsr:e dw, j=1,2,

Eét) =0, Hl(t) = CflEét), Hz(t) = 1E , and H = 0. The operator T is the
solution of the following It6—Schrodinger dzﬁuszon model for z € (0,L):

(4.2)  dT (w,z,2',2) = ;ﬂAm/T(w xz, o, 2)dz + 2—T(w z, ', z) odB(z', 2),
Co

with the initial conditions

(4.3) T(w,z, 2,z =0) = Tod(x — x').

Here Ay = 55/—1—35, is the transverse Laplacian, the symbol o stands for the Stratono-
vich stochastic integral (23], and B(x, z) is a Brownian field with covariance

(4.4) E[B(z, z)B(z', 2")] = min{z,2'}Cy(z — z'),
with
(4.5) Cole) = [ " O, )z,

C(z,z) =E[(n. + n,)(a' +x, 2"+ 2)(n. + n,)(x',2)].
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The time L/cq in (4.1) is the travel time from the source at z = L to the interface
z = 0 where the transmitted wave is observed. There is no other transmitted wave,
in the sense that, for any time ¢y # L/co,

E 4 2 —\ a—0 0
[H] (t:t0—|—a s,a‘x,z=0 )—> {O]

In [10] the existence and uniqueness have been established for the random process
V(w,x,2) =Ty ! /’j‘(w,w,w',z)qﬁ(m’)dx’,

for any test function ¢ with unit L?(R?)-norm. It is shown that the process V (w, x, 2)
is a continuous Markov diffusion process on the unit ball of L?(R?). The moment
equations, moreover, satisfy a closed system at each order [21], which allows for explicit
calculations of the mean intensity and the autocorrelation function [25].

The covariance of the effective Brownian field B depends on the two-point statis-
tics of ne + n,. Considering the model (2.7)—(2.8) for the medium parameters, this
means that the effective Brownian field is determined by the fluctuations of the local
propagation speed

3Ny +1n

cw2) =~ = o [1- 0?2 1) 4 0(e0)

JIE

but not by the fluctuations of the local impedance

C(x,2) = \/g =G {1 + a3%(w,z) + O(aG)] .

We can explain this by saying that the fluctuations of the local impedance are re-
sponsible for backscattering, which is negligible in the scaled regime considered in
this paper. Therefore, the detailed statistical information on the fluctuations of the
impedance is lost. However, the fluctuations of the local propagation speed are re-
sponsible for wave front distortion, and that is why they appear in the formulation of
the random paraxial wave equation.

Proposition 4.1 shows that, although the medium fluctuations can be statistically
isotropic, the strongly anisotropic scaling corresponding to beam propagation leads to
an approximation of the wave process with a noise model which is §-correlated in the
z-direction but exhibits correlation in the lateral directions. In the case of turbulent
atmosphere [32], the power spectral density of the fluctuations (proportional to the

Fourier transform of the autocorrelation function) is of the form (for k = (k,k),
Kk € R?)
A —ikz—ik-w —3-2H 2 27
C(k) = C(zx,z)e dzdzx ~ |k for |k| € =7 )
0 o

where H = 1/3, Iy (resp., Lo) is the inner scale (resp., outer scale) of the turbulence.
This corresponds to a spatial structure function

D(z,z) :=E [((nS +nu) (@, ) — (ne +nu) (@ +x,2 + z))z}

o (|| 4+ 22 for \/|z|? + 22 € (ly, Lo).
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The lateral power spectral density of the white-noise model can be obtained from
(4.5), and it is given by

~

. 1 2T 2
Co(k) = /Co(m)e*“"wd:n ~ || 7222 for |k| e <L_7(:’ l_:> )

giving rise to the modified spectral exponent H + 1/2 in the lateral direction [17].
We now describe the reflected field.
PROPOSITION 4.2. In the asymptotic regime o — 0, the reflected wave is of the
form

2L a— (r)
(4.6) [I?I] (t = o +ats,a’x, 2 = L+) et [I?I(T)} (s, @),

with

EJ(‘T)(&CU) = _Af_o // R(w, @, &', L)J;(w, 2" )dz'e " “*dw, j=1,2,
™

ES =0, H" = —¢;'ES), HY = ¢;'EY, and HS” = 0. The operator R is the
solution of the following Ito—Schrodinger diffusion model:

iCQ

dR(w, z, 2, 2) = %(Am + Aw/)ﬁ(w, x,x', 2)dz
(4.7) + 22.—2;7%(1,0, x,x',z) o (dB(x, z) + dB(z', 2)),
with the initial conditions
(4.8) R(w, @, x',z = 0) = Rod(x — x').

The time 2L /¢p in (4.6) is the travel time for a round trip from the surface z = L
to the interface z = 0. At time 0 we can also observe the wave field that is emitted
by the source and propagating to the right into the homogeneous half-space (L, 00):

o [EO
[I]ﬂ (t=a's o’z = L7) *2 Er(o)] 52

with

E;O)(s,m) = —%Jj(s,w), i=1,2, Eéo)(s,w) =0,
H = ¢ 'EY, BY = 1B, and HY” = 0.
There is no other reflected wave, in the sense that, for any to ¢ {0,2L/co},

FE a—0 0
{H} (t =10+ (148, 04233, z= L+) — [0] .

If there is no impedance contrast at the interface at z = 0, that is, if (1 = (o, then
Ry = 0 and the reflection operator R vanishes. This shows that in our asymptotic limit
no wave is reflected in this case. This result is the rigorous proof that the forward-
scattering approximation is valid in the scaled regime considered in the paper and
that the wave field is then described by the paraxial white-noise model (4.2).
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It is important to note that the stochastic partial differential equation (4.7) is
driven by a unique Brownian field B. This comes from the fact that the wave prop-
agates in the same medium when traveling from z = L to the interface z = 0 and
when traveling back from z = 0 to z = L. In particular this fact is responsible for the
enhanced backscattering phenomenon that we analyze in section 7.1.

The proofs of Propositions 4.1-4.2 that we will present in the next two sections
give the convergence of the joint process consisting of the transmitted and reflected
wave fields, with the same Brownian field used in the It6—Schrédinger models (4.2)
and (4.7). Moreover, the It6-Schrodinger model preserves the L2-norm and we have
the identity R2 +7¢ = 1. As a result we obtain the conservation of energy of the
reflection-transmission problem, in the sense that the sum of the energies of the trans-
mitted wave and the reflected wave is equal to the energy of the incident wave.

5. The derivation of the paraxial wave equation.

5.1. The homogeneous case. Let us assume in this section that the medium
is homogeneous: n. = n, = 0. We transform the two-point boundary value problem
(3.21)—(3.23) into an initial value problem. This is done by an invariant imbedding
step in which we introduce transmission and reflection matrices. First, we define the
lateral Fourier modes for k = (g, fiy) € R%:

aj (w, K, 2) = /d?(w, x,2)e” " Tdx, Eﬁ(w, K,2) = /Zv)?‘(w, x,z)e” P de.
The reflected wave is characterized by af (w, k, z = L), j =1,2, and the transmitted
wave by 3}1 (w,k,z2=07),j=1,2. The parameters w and k are frozen in the problem,

so we shall not write explicitly the (w, k)-dependence of the vectors and matrices. The
vector X (z) defined as in (3.20) with the Fourier modes @ and b is the solution of

J
the two-point boundary value problem
axe
dz

=A%(z)X",  K°X*(0)+K'X*(L)=V*,
where the 4 x 4 matrix f&"‘(z) is given by
A%(z) =A% + G A 4 Mt A2,

A7 are given in Appendix A, K° and K are given by (3.24), and

0
o bﬁlc 1 Ta ja —ik-x
V= 0| binc)j(w, K) = binc)j(w, x)e dx.
3%0,2
By applying Proposition B.1, we get that
~ ~ i wlL
(5.1) a;'-‘(z =L")=[RY(L)V“]yj_1€ o,

(52) bl?l(z — 0+) _ [Ta(L)Va]2jeicoa4
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for j = 1,2, where the reflection and transmission matrices R® and T° are the
solutions of the initial value problem

dR>

(5.3) o= - R°KY)A%(z)R®, R*(0) =K,
T S e A -

(5.4) ddz = -TK'A®(2)R*,  T%(0) =K,
where I is the 4 x 4 identity matrix and

1 Ry 0 0

_ 0 1 o 0 1 0 0

(5.5) K=(K'+K") =1 | Ry

0 0 0 1

Therefore, using (3.18) and (3.14), the reflected and transmitted modes are given by

~ ~ j—wL N _jwL
(5.6) @z = L") = [RY(L)Vgjo1e 02T a0, je 0o,
~ ~ ~ jwL
(5.7) b3 (2 = 07) = Ty[T*(L)V]pe 70eT

for j = 1,2. Note that the second term @f) ; in the expression of af(» = LT) is
actually the wave that is emitted by the source and traveling to the right.
Then we can apply a standard averaging theorem [1], [20, Chapter 6] which gives

the asymptotic behavior of the reflection and transmission matrices:

dR SR .
(5.8) - - (I-RK")AR, R(0) = K,
z
T o mon _
(5.9) i— = -TK"A'R, T(0) = K.
z
We also have
0 0
: o Y. binc,l _ C()§ Jl
(5.10) (}}E%JV =V = 0 =3 lo|"
binc,2 JQ
~ 1 ~
: a\’;)rtlc,l _ binc71 _ _Ci Jl
(511) (}‘lino |:aiortlc,2:| B [binc72‘| B 2 :]\2

The solution of (5.8) is the matrix
R(z) R(2)
0 1
0 0
0 0
where R and R are the solutions of
AR ~ = ~
- AN R, R(0)=1,

dz
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Therefore

~

(512) i (R (L) V]2 = [R(L)V]ayr =~ R(L)T,

for j = 1,2. The solution of (5.9) is the matrix

1 T(z) 0 0
~ . |0 T(z) o o
TEH=10 0 1 T

0 0 0 T(z)

where T and T are the solutions of

T o~ ~

o —TAY,, T(0) = Ry,

a7 ~

C=-TA,,  TO)=1
Therefore

C%
(5.13) lim [T*(L)V ;= [T(L)V]y; = —5-T(L) ],
for j =1,2.
The transmitted wave field at z = 07 is
E;(t,a*x,07) //bacUHO e ®dre artdw,

H, = Cl_lEz, Hs = —Cl_lEl, while the components E3 and Hs are obtained through
(3.5)—(3.6). Substituting (5.7) into this integral representation gives

T, o (L
E;(t, %@, 0" Cl 0/ [T (w, &, L)V (@, k)], eir @ dpetat (i .

By (5.13), we obtain

lim E; (L +ats,a’x,0” > = CO Cl To // (w, K)e™  Tdre™ “sdw.
co

a—0

By taking an inverse Fourier transform in &, we obtain partly the result of Proposition
4.1 (without the Brownian field). The kernel of the operator 7 is here of the form

T

(5.14) T (w,z, ', 2) = e

/f(w,n,z)em'(m_m/)dn.
The reflected wave field at z = L7 is

E;(t,a*z, L1) = @ (w, K, LT)e i@ e’ ai (55— du.




PARAXIAL APPROXIMATION FOR ELECTROMAGNETIC WAVES 1941

Substituting (5.6) into this integral representation gives

E;(t,az, L") = (w,k, L)V (w, )}2jilem'mdneiﬁ(%7t)dw

(w, kK)eF®dre a1t dw.

inc,j
y (5.11), we obtain
hm E; (a s, o, LJr 2 // (w, K)e*®dre™ “*dw,
)

which is the wave that is emitted to the right by the source. By (5.12),

2L ~ ~ , .
g‘ig% E; <g +ats, a’x, L*) = —2(5—;)3/ R(w,k,L)J;(w, k)e"™®dre™*“*dw,
which is the wave emitted to the left by the source and reflected by the random
section. By taking an inverse Fourier transform in k, we obtain partly the result of
Proposition 4.2 (without the Brownian field). The kernel of the operator R is here of
the form

(5.15) R(w, @, &', z) = ﬁ /ﬁ(w,n,z)em'(w*m/)dn.

5.2. The random case. We transform the two-point boundary value problem
(3.21)—(3.23) into an initial value problem. This is very important in the random case
so as to deal with quantities that are adapted to the filtration of the random driving
processes n. and n,. This transformation is done by an invariant imbedding step
in which we introduce transmission and reflection operators. The algebra is more
complicated than in the homogeneous case since the random medium fluctuations
involve coupling not only between the four modes (as in the homogeneous case) but
also between different k-modes. That is why we need to introduce matrix operators.
The vector X defined as in (3.20) is the solution of the two-point boundary value
problem

~

axe = = =
=A (2) X% K°X“(0) + KEX*(L) = Vv~

dz

=)

Here A" (2) is the matrix operator acting on four-dimensional vector fields ¥ (k) as

(A% (2)Y](k) = /ﬁa(n, K, 2)Y (k')dr,
with the kernel

A (kK 2) = 6(k — K) [AO 4 PRIG A 4o Mat A—?]

1 1 A Y z 21 — 27 —4=
e =) (5= w5 ) [ e
I , 2 0
(5.16) + E@ﬂ)z(na—i—nu) (K—FL,E)B .
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The matrices A’ and BJ are given in Appendix A. By applying Proposition B.1, we
get that the reflected and transmitted modes are given by
. wl

~Q o~ j—wl wL N —i
a5 (z=L")=[R (L)Vgj_1e 0" +ag, e 0o’

inc,j

~ ~« ~ jowL
bi(z=0") =To[T (L)V“]yje oot

for j = 1,2, where the reflection and transmission matrix operators are the solutions
of the initial value problem

T @ REHA R, R0)=K,
T - FRAGR, TR
z

Here the kernels of Z , I/C\, and IEL are
I(k, k') =6(k — k)L, K(k, k') = 6(k — k")K, K (k,K) =6k — k)K",

and K is the 4 x 4 matrix defined by (5.5).
Explicitly, the reflected and transmitted wave components are, for j = 1,2,

E;(t, o? T, L+ mCJ m-mdf@e—iﬁtdw
)blnc k(wa f{/)ei“'wd,{/d,{eiﬁ(%—t)dw’

’ Cl TO KX (L L —t)
E;(t,a*x,07) = ZT2J ok (W, K, K/ L)bmck(w H) dr/dre’ s dw.

We first note that the rapid phase in w is responsible for the localization in time of
the transmitted and reflected waves (provided we show that T" and R" have limits)
around times L/cg and 2L/cq, respectively. Therefore we focus our attention on the
transmitted and reflected fields

L
E“'(s,x)=E <t =~ +a's,o’x, O) ,
Co

Ev"(s,z)=FE <t = 2c_L +ats, a’x, L+) :
0

The proof of the convergence follows the strategy adopted in [25] for deriving
the paraxial wave equation from the acoustic wave equations. The proof is similar
because the random components of the operator A" have a diagonal block structure
(with 2 x 2 blocks along the diagonal), which means that it has the same structure as
the 2x 2 operator encountered in the acoustic case. The main step of the proof consists
in showing the convergence of the general moments of the transmitted and reflected
wave components to the ones given by the limit system of stochastic partial differential
equation (4.2). For N € N, j,, 7, € {1,2}, mp, 1, €N, s,,5, € R, and x,, &, € R?,
p=1,..., N, the general moment of transmitted and reflected wave components

N
—E{HEj‘j(sp,xp HE (3p, &) ]
p=1
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can be expressed as a sum of oM+M multiple integrals for M = Z;\f:l m, and

N -
M=%, my:
M

I;’ ( P h)h ,,,,, mp,p=1,..., Ne{l 2}1w
with
N myp N My
e 40 Cl L' dk!, ,dkp, pd d&!, ke, pda
kk 3(M+M) F"“;Dh Kp,ndWp,n F"“ph Kp,hQWp, b
p=1h=1 p=1h=1
N mp N Thp
[H H 2gp72kp h (Wp,h, Bop,hs ph’ H H sz_LQ/;p h(wpxhﬂﬁpﬁv ph’L)
N mp
X i(Kp,hTp—Wp, hSp)
X H bmc JKp, h(""’p,hv ph)e P poTRRTr
p=1h=1
N mp
B b3l i(Rp,n®p—Wp,nSp)
(518) X H H blnc K, h( p’h’ﬁpxh)e :

>
Il

p=1 1

Therefore, the convergence of the general moments of the transmitted and reflected
wave components in the white-noise limit will follow from the convergence of the
specific moments E[1%(L)] of the transmission and reflection matrix operators, where

\_/

M
(519) Ia(z) = %jkp(wpa K’Pa H 9 1. wpa '?“/;Da I?.‘/;),Z)

Jp

=

Il
-

p

We call these moments “specific” because we restrict our attention to the case in which
the frequencies w, and @, are distinct. It is important to note that the reflection and
transmission operators 7% and R” themselves do not converge to T and 73,, but
only certain moments converge (expectations of products of components with distinct
frequencies), which are those needed to ensure the convergence of the transmitted and
reflected fields in view of (5.18).

We use diffusion approximation theorems as in [25] to obtain the characterization
of the limits of the moments I* as o — 0:

M
(iL}HIOE[Ia |:H wpar“’pa ;7L)1_[1R3pl~cp("bp”%p7k;’l/)
p=

when the right-hand side expectation is taken with respect to the following Ito—
Schrodinger model for the transmission and reflection operators:

—5(n—n’) T 0 0
= 0 T 0 0
T ! = -

(5., 2) 0 0 dk-w) T|

0 0 o 7

R R 0 0
R(w, Kk, K, 2) = 0 dk—r) 0 0

0 0 R R

L0 0 0 dk-—~K)
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The kernels ’f(w, K, K 2), ﬁ(w, K,Kk', 2), and ﬁ(w, K, K', z) are the solutions of
ico|k'|?
2w

w200 (O)
8¢3

+ ﬁ /’f’(w, K, K", z)dé(n" — K, 2)dK",
™)=Co

A7 (w, K, K, 2) = T (w, K, K, 2)dz — T (w, K, K, 2)dz

starting from 7 (w, &, &/, 2 = 0) = 6(k — K/),

5 _ico(|K + |K?)

2
dR(w, k, k', 2) = 50 wCo(0)

i R(w, k, k', 2)dz

R(w, k, K, z)dz —

2
_ 4(#)203 /Co(n”)R(w, k—r" Kk — k" 2)dx"dz
w

+m/(ﬁ(w,n,n”,z)dﬁ(n”—n',z)+7€(w,n",n',z)d§(n—n”,z))dn”,
m)2co

starting from R(w, k, k', z = 0) = Ryd(k — k'), and

~ ; 2 _ 204(0) ~
dR(w, Kk, K', 2) = —MR(w, K,k 2)dz — &(;()R(w, K, k', 2)dz
2w 8¢

+ ﬁ /ﬁ(w, k" K, 2)dB(k — k", 2)dK",
m)2co

starting from ﬁ(w, Kk,Kk',z=0) = §(k—kK'). Finally, ’f(w, K,k 2) = RO’ZA‘(w, K, K 2).
Here the Brownian field B is the partial Fourier transform of the Brownian field B
with covariance (4.4). It has the following operator-valued spatial covariance:

E[E(n, 2)B(K/, 2")] = min{z, 2'}(27)2Co(k)6(Kk + K').

By considering the transmission and reflection matrix operators in the original spatial
variables,

o T . NP

T(w,z, 2, 2) = ﬁ // e e=_ )T () kK, 2)dkdK/,
T

o 1 . NDS

Rw,z,x',z) = @2 // e T=R_ TR (W, Kk, K, 2)dkdK,
T

we obtain that they satisfy the systems (4.2) and (4.7) where we use the Stratonovich
integral instead of the It one.

6. The Wigner distributions of the transmitted and reflected fields. As
mentioned in the introduction, the It6—Schrédinger model is very convenient in order
to compute the statistical properties of the transmitted and reflected waves, since the
moment equations are closed at any order. The analysis of the second-order moments
allows us to get the autocorrelation functions of the waves, or equivalently the Wigner
distributions which are determined by a closed system of transport equations [15, 16,
25, 30].

Let us denote by wy the carrier frequency and by B the bandwidth of the source.
We consider two frequencies wy and ws in the spectrum centered at wg, and we define
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the two-frequency Wigner distribution of the transmission operator by

1 y ’ ’
(61) WT(CC7 xla K, K/la Z) = W / dydy/e_z('i'y—ﬁ y')
A/ /
xE|T w1, “o m+g 7_VWO w/_'_g 2
Yaud! 2) Jwi 2

B2 B 1))

Using the It6-Schrodinger equation (4.2) and It6’s formula, we find that the Wigner
distribution satisfies the closed system

OWT ok’

v wT = _ Co(0)(wi + w3)
0z wo * 8¢c3

. i (VT VT Y v
+—“’1”2/c@<u>e“(«% BT (@ w2 (LR 0y ) qu,
4(2m)2c 2 w1 w2

WT(z, 2, k, K, 2)

starting from

wiw2

Wiz, 2’ k, k', 2 =0) =T5—
w
0

dx —x')o(k — K.

It is possible to solve this system and to find an integral representation of the two-
frequency Wigner distribution by using the approach of [15]. However, this represen-
tation can be simplified if the bandwidth B of the source is much smaller than the
carrier frequency wy. In this regime, if wy,ws lie in the spectrum of the source, then
the two-frequency Wigner distribution W7 depends only on the carrier frequency wy
and not on the lag wy — wy. The Wigner distribution satisfies

owT B cok’
0z wo

(6.2) —wT (w,w’,n,n’,z)]du,

2 o~
Ve WT = 4(;;%/00(11) [WT(sc,sc’, KK +u,z)
0

starting from W1 (z,2',k,k',z = 0) = T¢6(z — 2')0(k — K'). We remark that the
equation for W7 has a form similar to the radiative transport equation for angularly
resolved wave energy density. However, the equation for W7 has been established by
taking into account all incoherent and coherent effects. By taking a Fourier transform
in k' and &’ of (6.2), we obtain an equation that can be integrated and find the
following integral representation for W7

2 cor
WTh(x,x' kK, 2) = —(50)4 // ei(ﬁ/*n)-yle—i(m —@+ 05 5)
7r

LJJ2 "z
ﬁ jO Co(y1+%z’)—00(0)dz’

(6.3) X € dy1dk;.

The function W7 can be interpreted as the kernel of the operator that gives the
Wigner distribution W¥ of the transmitted field in terms of the Wigner distribution
W+ of the source. Indeed, the Wigner distribution of the transmitted field

Wﬁ(sl,s%w, K) = /IE [Ej(t) (81,:2 + g) El(t) (82,(1) — %)} e " Ydy
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can be obtained through the formula (for 5,1 = 1,2)

(6.4) Wﬁ(sl,SQ,x,n) = %/ WT(m,m',n,n’,L)W]{l(sl,sz,x',n')dw'dn’,

/

!
WJ{l(S]_,SQ,[EI,K/) = /Jj <sl,w' + %) J; (SQ,wl — %) e Y dy.

We now define the two-frequency Wigner distribution of the reflection operator
by

]_ . o
(6.5) Wh(z,z' kK, 2) = @2 // dydy’e"=y=K"Y)
T
/ / /
xE|R (w, Dt Y ,ﬂ o+ 2 ,Z
\/ W1 2 A/ W1 2

A ) 1))

If the bandwidth is small and if wy,ws lie in the spectrum of the wave, then we find
that the two-frequency Wigner distribution W depends only on the carrier frequency
wp and not on the lag wy —ws. The Wigner distribution then satisfies the closed system

(‘9WR Co ’ R
G +w—0(ﬁ~vm—ﬁ? vm’)W

2
= 4(#(;203/00(’&) {WR(m,m’7n—u’n/7z) —I—WR(SU,SU/,R, Fa/—|—u,z)

1 1
- QWR(w, ' kK, 2) + 2w (:B, ' k- 3 K + U z) cos(u- (xz—x'))

1 1
(6.6) —2WR (:B, ' Kk — 3 K — U z) cos(u - (z — w'))] du,

starting from WE(z, 2’, k, k', 2 = 0) = R}5(x—2')6(k—~k’). The Wigner distribution
of the reflected field is given in terms of the Wigner distribution of the source by (6.4)
with W% instead of W7 and with the multiplicative factor ¢2/4 instead of (y(1/4.
The Wigner transform of the reflection operator contains all incoherent and coherent
effects, and we will see in the next section that it accounts, for instance, for the
enhanced backscattering phenomenon.

7. Electromagnetic coherence and applications.

7.1. Enhanced backscattering. In this section we illustrate the fact that the
1t6—-Schrodinger model captures all coherent effects. We here generalize the results ob-
tained in [25] to show that the reflected power exhibits a singular picture in a very nar-
row cone around the backscattered direction. This phenomenon, observed in particu-
lar in the context of backscattering from a heterogeneous medium, is called enhanced
backscattering or weak localization and is extensively discussed in the physical liter-
ature [5, 31]. The physical observation is that, for an incoming quasi-monochromatic
quasi-plane wave, the mean reflected power has a local maximum in the backscattered
direction, which is twice as large as the mean reflected power in the other directions
(see Figure 7.1). The physical explanation is that the enhanced backscattering phe-
nomenon results from constructive interference between a multiply scattered ray and
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spec inc

Fic. 7.1. Schematic for the enhanced backscattering phenomenon: when an incoming quasi-
plane wave traveling through a random medium is reflected by an interface, the mean angularly
resolved reflected power (solid line) consists of a broad diffusive cone around the specular direction
and on the top of it a narrow cone of relative mazximum equal to two centered around the backscattered
direction.

its time-reversed counterpart. It can also be observed in the context of scattering from
rough surfaces [28]. Moreover, similar physics manifests in closed ballistic systems or
strongly multiple scattering system [12, 36], where the enhancement can exceed a
factor of two.

In this section the source has the form

J(t,x) = f(t)e ™lg(x) + c.c.,

where c.c. means complex conjugate. We assume that it is narrowband around the

carrier frequency wyg, and that it generates a quasi-plane wave, in the sense that g(x)

is concentrated at some Ki,.. By “concentrated” we mean that the diameter of the

support of g(k) is smaller than k3(2/L, where I, is the transverse correlation radius

of the random fluctuations of the medium and ko = wy/co is the carrier wavenumber.
In the asymptotic regime o — 0, the reflected wave in the k-direction is

) (s, 1) :/Em(s’m)em.mdm’

where E() is the solution of the Ité6-Schrédinger model of Proposition 4.2. In the
Fraunhofer regime kol2 < L, using the same method as in [25], we find from (6.6)
that the mean reflected intensity of the jth polarization in the k-direction is of the
form

(7.1)
(7 (:22 r .
E[|E]" (s, k)" = PRSPPI (k). j=1.2,
12
(7.2) I (k) = V7 (k= Kine) + V) (K — Kine) — e~ 2 COL§ (ks — kipe),

where P; = [ |g;(k)|?dk and

(7.3) Vo) = 1z [ i 1 Cotut ) =Co(0)a= gy,

= - 4q2
In the absence of random scattering Cy = 0, we have the usual specular reflection

I7(K)] oyzp = 6(K = Kine).
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In the presence of random scattering, the specular reflection takes the form of a
Dirac peak at Kipe with intensity exp(—k3Co(0)L/2) and a diffusive cone centered at
Kinc. More exactly, far enough from the backscattered direction —kinc, the reflected
intensity is

(7.4) IM (k) =V (k — Kine)  for |k + Kine|L > koly
2

~ K o 0L 1 —i(k—Kine)-u (.28 Co(u)L
— ¢~ =2 Co(0) 5(H_Hinc)+4—ﬂ_2 e—ilk—k )u(62 o(u) _1)du.

In a narrow cone around the backscattered direction —kinc, the reflected intensity
is locally larger and given by (7.2). The maximal enhancement factor (compared to
(7.4)) is reached at the backscattered direction —ki,e and is equal to 2. It is possible
to give explicit expressions for the shape of the enhanced backscattering cone in the
strong scattering regime, as we show below.

Let us assume that k2Co(0)L > 1 (which means that random scattering is strong
and that the coherent specular peak is vanishing) and that the correlation function
Cy is twice differentiable at zero: Co(z) = Cy(0) — £2|x|> + o(|z|?) (which means
that the fluctuations of the medium are smooth and isotropic), where

1 1 A

Physically, if we denote by o (resp., I, 1) the standard deviation (resp., the transverse
correlation radius, the longitudinal correlation radius) of n. +n,, then Cy(0) ~ oL,
and Dy ~ 0212152.

The expression (7.4) of the specular cone can then be simplified to

1 — L1 —|k—Kinc|?
(7.5) I(T)(”) = me ngOLl | for |k + Kine|L > kol
00

This formula gives the width of the diffusive cone around the specular direction Kiy:

(76) Aﬁspec =V DQLko, AHSDEC =V DQL,

where the angular width is defined by Afspec = Akgpec/ko. On the top of this broad
cone, we have a narrow cone of relative maximum equal to two centered along the
backscattered direction —Kipe:

1 1
77 I(’r‘) - - k2D0 L
(7.7) () wk2DoL"

Kf*nincﬁ

DyL3
1+ e—?—2|n+mnc|2}

This shows that the width of the enhanced backscattering cone is

V12 V12
7.8 AV = —, Al =
9 B S o A0 S U
Note that the angular width Afgpc of the cone is proportional to the wavelength, as
predicted by physical arguments based on diagrammatic expansions [31]. As discussed
in subsection 7.3 these formulas can be used in tomography for the measurements of
the scattering coefficient and the interface location.
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7.2. Time reversal. In this section we discuss applications to time reversal. A
time reversal mirror (TRM) is an array of antennas that can be used as either receivers
or emitters. Consider the case in which a source emits a signal that is captured on
a TRM and then stored and resent in the reverse direction of time, that is, “last in
first out.” Depending on the size of the TRM the signal will then refocus tightly at
the original source location. This general problem has received much attention from
both the experimental and mathematical viewpoints and has a number of applications
[18, 20]. In a random medium the angular spread of the forward propagating wave
can be much wider than in a homogeneous medium, while the correlation radius can
be much smaller. This duality can in fact create a better refocusing in the random
medium as compared to the homogeneous medium, as the refocusing is a coherence
phenomenon [14, 16].

In the first part of the time reversal experiment the electromagnetic source is
located at z = L as in (2.9). The TRM is located at z = 0 and is used as an array
of receivers. Its transverse spatial support has a radius of order o and is denoted by
a?D C R2. Tt records the field during the time interval [L/co — o*T, L/co + o*T],
with the center at the expected travel time L/co and with width 2a*7T. The TRM
records part or all of the components of the electromagnetic field. The recorded field
is

(rec) (1) L
[g(rec)} (s,x) = [AO A?2)] [I?I] (c_ +ats, a’x,z = 0) , se€[-T,T], x=e€D,
0

where A and A(® are 3 x 3 diagonal matrices whose nonzero elements correspond
to the components of the electromagnetic field that are recorded by the TRM.

In the second part of the time reversal experiment the recorded signal is time-
reversed in memory and sent back in the medium by the TRM used as an array of
emitters. The new source is

(s) _ t
Jmir(tawaz) - Jmir (ga ?) 5(2)7

mie(s,x) = [( ' BYEC) (—s,2) + BOH) (s, 2)] v, (%)xx (%) :

where B and B(®) are 3 x 3 constant coupling matrices that scramble the measure-
ments, 2a*T is the recording time duration, and a?A is the radius of the TRM. The
functions yx and y; are normalized space and time windows for the resent signal; they
can be either characteristic functions of the time-space domain where the electromag-
netic field is recorded or some other functions that allow for space-time dependent
amplification of the resent signal. In the small-« limit the refocused field observed in
the original source plane z = L

E(ref) E L
|:H(rcf):| (s,x) = {H} <a +ats,0’w,z = L)

can be expressed as
B (s,0) =~ [[ 7 ', L,0) e (w, &' )da e T dw,  j=1,2
i () =— w,z, &', L,0)J; mir(w, x')dx’e w, j=12,

ESD — o0, B = —¢ ESD ) BEY = (o EMD ) and HY = 0. Here we wrote

7T (w,z,2', L,0) for the time-harmonic transmission kernel corresponding to propaga-
tion from the plane z = 0 to the plane z = L.
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The source terms of the TRM can be written in the form (j = 1,2)

s (0, @ ———//Tw 2,0, L) (&, @) (5) 0T — )T dufde
et j(w, ) = (B(l)A V- B2AY) ) Ji(w,z) + ( B AY + BRAY ) Jo(w, ).
The refocused field can then be written as (j = 1,2)
EJ(-rCf) (s,@) = %/ l%(w,w',:c,:c')jeff,j(w',w')dw'dw'e*i“’sdw,
with the refocusing kernel being

o 1 o -
K(w, o'z, x") = W/T(w,:B,:B”,LO)T(cu',:B’,:B”,LO)
T

(79) (5 )Rl - )T d"

where we have used the reciprocity identity ’f(w’,w”,m’,O,L) = T(w’,x’,m”,L,O).
We can use the two-frequency Wigner distribution to obtain an expression for the
mean refocusing kernel. We again obtain a simplified expression in the regime when
the carrier frequency wg of the source is larger than its bandwidth B and when the
recording time 7" is larger than the duration of the source 1/B. In this regime we find
that the expression for the mean refocusing kernel for w,w’ in the bandwidth of the
source is

E[K(w,o', 2, 2")] = X¢(T(w — ")) TKo(z, z')

with

Ko(z,x") // (w+w :B”,n,n',L) i (@—a')y <:f4)dndndm"

A2w0 i le 2 e’ 3 “0'2L 1 Gy (sle—a'|/£a)—Co(0)d (z — &' )wo A
- @ co e
C()L ’

(2m)*(coL)?

where we assumed that the covariance function has the form Cy(x) = 1.Co (||/£.),
for Cy a normalized shape function, [, the longitudinal correlation length, and [, the
transverse correlation length.

We now assume that the medium Fresnel length is large compared to the central
wavelength: v/Z,L > \g. Then we obtain the characterization

2 old 712

A2,,2 ;w0 lz?oje/2 20LfzCo Deme P (x — ' )wo A
0 o 2L 24@3% o

—_— e X<\ ———— |-

(2m)* (COL) coL

The spatial support of the refocusing kernel in the case without random medium
effects is the classic Rayleigh resolution O (A\gL/A), while the spatial support of the
exponential that comes from random effects is O (me\o/ \/ﬂz—L), thus, the random
medium actually improves the resolution if A < L(v/Z.L/(y).

To obtain an explicit expression for the effective aperture we assume that the
spatial window has a Gaussian shape yx(x) = exp(—|z|?/2), so that

Ko(z,x') =

2 LeyCl(0) 2
A202 cwo |e[2-]2/ 2 20 oA )|m7w/|2

/ 7 s — 2 2 2
Ko(:n,:n ) = 706 co 2L e o ( 2402 2L ’

(2m)3(coL)?
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and we also assume that the original source has a Gaussian shape with radius rg:
J(s,x) = J(s) exp[—|z|?/(2r2)]. We then find that the mean refocused field is

-2, -2, —2.  —4 -4, -2 -2, —4

2,2 . w2 g “(rg “HTy 7y m|2 g A2 Ty Ty

E[E(-rCf)(S, )] _ Xt(O)A wOCOJeﬂ“J(S) e 2r2 (T52+T1—2)2+T2—4 6127‘% (7‘0—2““1—2)24”2—4
J

1
4L2(rg % +r 2 +iry %)

where (for j =1,2)
(710)  Jenrgls) = (BY AY = B AR ) hi(=9) + (B AL + B AT ) ha(—s)

and

_ ol _ a2 JGOELE s al
(7.11) L= oA Aet = \/A + e Ty = wo

If the initial source is point-like rg — 0, then we have simply

X0 (0) A% Cord Jom s (s) ek it
4c2L?

(7.12) E[EY(s,x)] ~

This corresponds to a refocusing spot size given by the effective Rayleigh resolution
formula AgL/Aest for Aes, the effective TRM size enhanced by the random medium
as in the scalar case [8, 29].

Note the following:

e We have discussed only the refocused mean field. In fact, in a regime of
large lateral diversity the realization-dependent fluctuations around the mean
signal are small and the refocused profile is self-averaging [30].

e The effective TRM size and the refocusing enhancement due to the random
medium are independent of the “scrambling” of the modes at the TRM. It
is now clear that one can record only one component of the electromagnetic
field and use this signal as a source and still experience superfocusing! Only a
very particular combination of the recorded electromagnetic signal cancels the
effective source Jeg in (7.10), and all other combinations generate a refocused
field with the same spatial profile. Our paraxial representation that articu-
lates the correlation between modes gives directly this result, and therefore
that time reversal in our configuration can be carried out in a robust fashion.
The central and novel aspect of our representation is that we have obtained
a joint representation for the modes that involves one, common, Brownian
motion which reflects the fact that the modes are associated with the same
speed of propagation and “sense” the medium fluctuations in the same way.

7.3. Coherence, wave spectrum, and imaging. An emerging portfolio of
techniques involves imaging in heterogeneous media by exploiting coherence phenom-
ena in wave fields that is due to fine scale heterogeneities in order to image macroscale
features. We believe that our results are important for developing such techniques in
the context of electromagnetic waves.

In section 7.1 we discussed the interesting physical phenomenon of enhanced back-
scattering. This phenomenon can have a practical application in the context of to-
mography in scattering media [35]. Indeed, it follows from our description that the
observation of the width of the diffusive cone and of the enhanced backscattering cone
can be used for estimation of the scattering coefficient Dy and the interface location
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L. The use of the observed cone for imaging purposes is explored numerically in the
context of elecromagnetic waves in [13]. Our analysis in section 7.1 describes the cou-
pling between the medium parameters and the cone parameters which facilitates the
use of the cone for imaging purposes. In [13] it was in particular explored numerically
how the use of polarization may affect the stability of the cone enhancement. Our
analysis was performed in the context of the far field. The technique is relevant also
in the near field, where the cone dynamics becomes important [2, 3].

The It6-Schrodinger model can also be used to analyze the cross correlations of
signals emitted by ambient noise sources and recorded by a sensor array. The compu-
tation of cross correlations can be interpreted as a passive time reversal experiment
since both situations involve a product of propagation operators (or Green’s func-
tions) with one of them being complex-conjugated. Therefore, in both situations the
Wigner distribution of the field plays a critical role. Cross correlations of noisy signals
can be used for travel time estimation and applied for tomographic imaging [11, 24].

8. Conclusion. In this paper we have used invariant imbedding and diffusion
approximation theorems to study the white-noise parabolic approximation for electro-
magnetic wave propagation. We have shown that in a scaling regime the transmitted
and reflected wave fields are determined by a system of Schrodinger equations driven
by a Brownian field. It is the same Brownian field in the Schrodinger equations that
gives the weak description of the transmission and reflection operators. Thus, only
one Brownian field is needed to describe the joint statistics of the electric and mag-
netic components of the wave field. The covariance function of this single driving
Brownian field is determined in terms of the two-point statistics of the fluctuations of
the dielectric permittivity and the magnetic permeability. In particular the enhanced
backscattering phenomenon can be analyzed in this regime, and we provide explicit
formulas for the width of the diffusive specular cone and the one of the enhanced
backscattering cone. The enhanced backscattering phenomenon and, more generally,
the wave spectral information of the reflected wave can be used for imaging purposes,
and for the analysis of such problems our representation is important. The limit
description that we obtain for the transmission and reflection operators also allows
us to analyze time reversal of electromagnetic waves in a random medium and the
associated refocusing resolution. The fact that only one Brownian field is involved
means that this process is robust with respect to the number and type of components
of the electromagnetic field that are recorded.

Many interesting open questions remain, and we believe that our paper represents
an important step in the direction of development, from first principles, of a framework
for the description of electromagnetic waves in media with scale separation. Important
generalizations involve in particular the case of smoothly varying macroscale medium
parameters and scattering off complex geometries.

Appendix A. Expressions of the matrices. The matrices B’ are defined by

1 0 0 0 010 0

o_iw [0 -1 0 0 w000 00 S

Bl=owlo 01 o B =500 0 1] B=-B7)
0 0 0 —1 000 0

The matrices A7 are obtained from AJ by substitutions ir, — % and ik, — 8%7 and
we have
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-1 0 0 0
~o _dc(Ri+E2) 1O 1 0 0
B 2w 0 0 —1 of’
0O 0 0 1
0 k2 - '%32; 0 2kzky
A—2 _ fico |0 0 0 0 R2_ (AT
AT = 2w |0 2Kzky 0 /if,—/ii , AT=-(AT)
0 0 0 0

Appendix B. An invariant imbedding theorem. Let us consider the two-
point boundary value problem for X (z) € R™:

dX

(B.1) =

(2) =A(2)X(z), 0<z<IL,
with the boundary condition
(B.2) KX (0) + KEX (L) = VO,

Here A(z), K% and K% are (m x m)-matrices and V' is an m-dimensional vector.
In this linear framework the invariant imbedding approach leads to the following
proposition [6].

PROPOSITION B.1. Let us assume that K° + K is invertible. Let us define
the matrices (R(¢))o<c<r and (Q(z,¢))o<z<c<r as the solutions of the initial value-
problems

(B.3) %(0 — AOR() ~ROKFAQR(),  0<(<L,

starting from ¢ = 0: R(¢ = 0) = (K° + K*)~!, and

0Q

(B.4) %

starting from ¢ = z: Q(z,{ = z) = R(z). Then P(z) = Q(z, L) is the solution of

dP
—(z) = A(2)P(2), 0<z<L,
dz
with the two-point boundary conditions

K°P(0) + K'P(L) =1,

and consequently X (z) = P(2)V? is the solution of (B.1) with the boundary condition
(B.2).
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